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Abstract

Let F be a field with proper involution − and let r, s be even integers with r, s > 2. Let SHr(F)
andCr−1(M) denote the set of all r×r skew-Hermitianmatrices over the field F and the (r−1)-
th compound of a matrix M , respectively. In this study, we investigate the characterization of a
mapping ζ : SHr(F) → SHs(F) that satisfies,

ζ(Cr−1(M + γN)) = Cs−1(ζ(M) + γζ(N)),

for anyM,N ∈ SHr(F) and γ ∈ F
−, where F− = {x ∈ F | x = x}.
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1 Introduction

Let Mr(F) denote the set of all r × r matrices over the field F. LetM be a matrix in Mr(F). We
useMij , MT , |M |, R(M), M [i | j], Mρ, andM∼ to represent the (i, j)-entry ofM , the transpose
ofM , the determinant ofM , the rank ofM , the matrix obtained by eliminating the i-th row and
j-th column fromM , the matrix obtained fromM by applying ρ entrywise, and the matrix whose
(i, j)-th entry is Mr+1−j,r+1−i, respectively. We also use Ir, 0r, and Eij to represent the identity
matrix in Mr(F), the zero matrix in Mr(F), and the matrix whose (i, j)-th entry is 1 and other

entries are 0, respectively. We let Jr =

r∑
i=1

Ei,r+1−i and Zr =

r∑
i=1

(−1)i+1Eii. It can be checked

thatM∼ = JrMJr. To avoid confusion, we write ||S|| to denote the cardinality of a set S.

Let F be a field. A bijective mapping − : F→ F is an involution of F if x = x (i.e., applying the
mapping − twice returns the original element) for any x ∈ F, x+ y = x+ y and xy = yx for any
x, y ∈ F. We define F− = {x ∈ F | x = x} and SF− = {x ∈ F | x = −x}. Note that if F = F−, then
− is the identity involution of F, otherwise, − is a proper involution of F. We denote by SHr(F)
(respectively, Hr(F)) the set of all r × r skew-Hermitian (respectively, Hermitian) matrices over
the field F. IfM = −MT (respectively,M = M

T
), thenM ∈ SHr(F) (respectively,M ∈ Hr(F)),

where− is applied onM entrywise. The (r−1)-th compound of amatrixM , denoted byCr−1(M),
has the (i, j)-th entry of Cr−1(M) is defined by,

(Cr−1(M))ij = |M [r + 1− i | r + 1− j]|.

In the following, we present some basic properties of Cr−1(M) as stated by Chooi [6].

Lemma 1.1. ([6, Lemmas 2.2 and 2.3]) Let F be a field with involution − and let r ∈ N with r > 1. Let
M,N ∈ Mr(F) and γ ∈ F. Then the following assertions are valid.

(a) Cr−1(0r) = 0r.

(b) Cr−1(Ir) = Ir.

(c) Cr−1(γM) = γr−1Cr−1(M).

(d) Cr−1(MN) = Cr−1(M)Cr−1(N).

(e) Cr−1(M
−1) = Cr−1(M)−1 when the rank ofM is r.

(f) Cr−1(M
T ) = Cr−1(M)T .

(g) Cr−1(M) = Cr−1(M).

(h) Cr−1(M
∼) = Cr−1(M)∼.

(i) Cr−1(M
ρ) = Cr−1(M)ρ, where ρ is a field homomorphism of F.

(j) IfM = Jr orM = Zr, then Cr−1(M) =

{
−M, if r ≡ 0, 3 (mod 4),

M, otherwise.

(k) R(Cr−1(M)) = r, if and only if R(M) = r.

(l) R(Cr−1(M)) = 1, if and only if R(M) = r − 1.

(m) R(Cr−1(M)) = 0, if and only if R(M) ⩽ r − 2.
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(n) Cr−1(M) = Zradj(M)∼Zr, where adj(M) stands for the adjoint matrix ofM .

(o) Cr−1(Ir − Er+1−i,r+1−i + (γ − 1)Ejj) = γEii for any i, j ∈ N with 1 ⩽ i ⩽ r and
1 ⩽ j ̸= r + 1− i ⩽ r.

(p) Cr−1(Ir − Er+1−i,r+1−i − Er+1−j,r+1−j + (−1)i+j+1γEr+1−j,r+1−i) = γEij for any i, j ∈ N

with 1 ⩽ i ̸= j ⩽ r.

Matrix theory is important in both mathematical research and practical applications across
various fields. Bayram and Kaplan [1] shows its application in computer algebra whereas Chern
and Teh [4] used Parikh matrix in understanding structural properties of words and their nu-
merical properties. The investigation of invariants plays a significant role in matrix theory. One
well-known area within matrix theory is Linear Preserver Problems. Linear Preserver Problems
is considered an advanced topic in matrix theory because it involve the characterization of linear
mappings that preserve certain invariants between matrix spaces. The earliest research on Linear
Preserver Problems can probably be traced back to the paper [11]. Frobenius [11] demonstrated
that a linear mapping f : Mr(C) → Mr(C) that preserves the function (i.e., |f(M)| = |M |) for all
M ∈ Mr(C) is of the form,

f(M) = PMQ for anyM ∈ Mr(C),

or

f(M) = PMTQ for anyM ∈ Mr(C),

where P,Q ∈ Mr(C) with |PQ| = 1. For the motivation of Linear Preserver Problems, refer to
the survey paper [13]. Li and Tsing [14] described some techniques used in Linear preserver
problems. [15] surveyed on not only linear but also additive preserver problems.

Let matrix spacesM1 andM2 over the same field, ifM ∈ Mi for i ∈ {1, 2}, then Υ(M) ∈ Mi

where Υ is a matrix function. A mapping ψ : M1 → M2 that satisfies ψ(Υ(M)) = Υ(ψ(M))
for any M ∈ M1 is called a Υ-commuting mapping. Linear mappings commuting with certain
transformations is also a type of Linear Preserver Problems. Sinkhorn [19] was a pionner to dis-
cussing this kind of problem by considering Υ(M) = adj(M). He studied adjoint-commuting
linear mapping on Mr(C). One the basis of the classical theorem of Frobenius [11] concerning
determinant preservers, Sinkhorn used the continuity argument and proved that for r ⩾ 3, the
mapping ψ : Mr(C) → Mr(C) is of the form,

ψ(M) = µPMP−1 for anyM ∈ Mr(C),

or,

ψ(M) = µPMTP−1 for anyM ∈ Mr(C),

where µ ∈ C with µr−2 = 1 and P ∈ Mr(C) with P is invertible. In [3], Chan et al. general-
ized Sinkhorn’s result from the complex field to arbitrary infinite fields. In the same paper, the
authors considered Υ(M) = eM . They determined the structures of linear mappings on square
and symmetric matrices that commute with the exponential function. In [2], Chan and Lim were
interested in Υ(M) = Mk for certain fixed integers k > 1. They characterized linear mappings
that commute with the k-th power function on square matrices.

With the in-depth study of Linear Preserver Problems, the authors in [12, 16] proposed re-
placing the linearity assumption with additivity or homogeneity assumptions. Later on, some
researchers studied Υ-commuting mappings on various matrix spaces by dropping the linearity

655



W. S. Zheng et al. Malaysian J. Math. Sci. 19(2): 653–672(2025) 653 - 672

assumption. For example, the adjoint-commuting additivemappings on block triangular matrices
were investigated by Chooi [5], additive rank-1 preservers on Hermitian matrices were studied by
Tang [21].

Let r, s ∈ N with r, s > 2. Let M1 and M2 be matrix spaces over the same field. A mapping
ζ : M1 →M2 is said to be a compound-commuting mapping if ζ satisfies,

ζ(Cr−1(M)) = Cs−1(ζ(M)) for anyM ∈M1.

The study of compound-commuting mappings on various matrix spaces was initiated by Chooi
[6]. In recent years, many researchers do not consider strong assumptions like linearity, additivity,
or homogeneity on Preserver Problems. For instance, Dolinar and Šemrl [9] studied determinant
preserver problems by imposing weaker assumptions. They showed that a surjective mapping
f : Mr(C) → Mr(C) satisfying,

|M + γN | = |f(M)|+ γ|f(N)| for anyM,N ∈ Mr(C) and γ ∈ C,

is linear without imposing the linearity assumption. In other words, they showed that Frobenius’s
result in [11] still holds true when the linearity assumption is removed and replaced with weaker
assumptions. Tan and Wang [20] further improved the work of Dolinar and Šemrl [9]. They
removed the surjectivity assumption and demonstrated that Frobenius’s result holds true for any
field with more than r elements. Chooi and Ng [7, 8] investigated the general form of adjoint-
commuting mappings on various matrix spaces without imposing strong assumptions.

Motivated by their works, this study focuses on compound-commuting mappings on skew-
Hermitian matrices under weaker conditions. Our aim is to investigate the characterization of a
mapping ζ : SHr(F) → SHs(F) that satisfies,

ζ(Cr−1(M + γN)) = Cs−1(ζ(M) + γζ(N)), [S1]

for anyM,N ∈ SHr(F) and γ ∈ F−.

Before we proceed to the next section, we provide some examples of compound-commuting map-
ping on skew-Hermitian matrices that satisfy [S1].

Example 1.1. Let F be a field with proper involution − and let r, s be even integers with r, s > 2.

(a) Let k ∈ N with k ⩽ s− 2. Let ζ1 : SHr(F) → SHs(F) be defined by,

ζ1(M) =


k∑

i=1

MiiEii, if 1<R( M)<r,

0, otherwise.

(b) Let k ∈ N with 2 ⩽ k ⩽ s. Let ζ2 : SHr(F) → SHs(F) be defined by,

ζ2(M) =


k∑

i=2

(M1iE1i +Mi1Ei1), if 1<R( M)<r,

0, otherwise.

(c) Let k ∈ N and s > r + k. Let f : SHr(F) → SHr(F) be a non-zero mapping and define
ζ3 : SHr(F) → SHs(F) by,

ζ3(M) =

{
02 ⊕ f(M)⊕ 0s−r−2, if 1<R( M)<r,
0, otherwise.
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By applying Lemma 1.1(k)-(m), we observe that each ζi satisfies,

ζi(Cr−1(M + γN)) = 0s = Cs−1(ζi(M) + γζi(N)),

for anyM,N ∈ SHr(F) and γ ∈ F−. Additionally, we see that each ζi is neither injective nor surjec-
tive, and it is not necessary for r and s to be the same. This shows that each ζi does not necessarily
have a general form. In this study, we aim to determine the general form of ζ : SHr(F) → SHs(F)
that satisfies [S1].

2 Preliminaries of the Main Result

First, we establish some relationships between Hermitian matrices and skew-Hermitian matri-
ces.

Lemma 2.1. Let F be a field with involution − and let r ∈ N. LetM ∈ Mr(F) and µ ∈ SF− with µ ̸= 0.
Then, the following assertions are valid.

(a) M ∈ Hr(F) if and only if µM ∈ SHr(F).

(b) M ∈ SHr(F) if and only if µM ∈ Hr(F).

Proof.
(a) IfM ∈ Hr(F), then (µM)

T
= (µ)(M

T
) = −µM . This leads to µM ∈ SHr(F). Conversely,

since µM ∈ SHr(F), it follows that −µM = (µM)
T
= (µ)(M

T
) = −µMT . This yields that

M =M
T and consequently,M ∈ Hr(F).

(b) IfM ∈ SHr(F), then (µM)
T
= (µ)(M

T
) = (−µ)(−M) = µM . This leads to µM ∈ Hr(F).

Conversely, since µM ∈ Hr(F), it follows that µM = (µM)
T

= (µ)(M
T
) = −µMT . This

yields thatM = −MT and consequently,M ∈ SHr(F).

Lemma 2.2. Let F be a field with involution − and let r, s be even integers with r, s > 2. Let µ be a fixed
arbitrary non-zero element in SF− and let ζ be a mapping from SHr(F) to SHs(F). If h : Hr(F) → Hs(F)
is a mapping satisfying,

h(W ) = µ−1ζ(µW ) for anyW ∈ Hr(F),

then, the following equations are equivalent.

(a) h(µr−2Cr−1(M + γN)) = µs−2Cs−1(h(M) + γh(N)) for anyM,N ∈ Hr(F) and γ ∈ F−.

(b) ζ(Cr−1(M + γN)) = Cs−1(ζ(M) + γζ(N)) for anyM,N ∈ SHr(F) and γ ∈ F−.
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Proof. (a)⇒ (b): For anyM,N ∈ Hr(F) and γ ∈ F−, we have,

ζ(Cr−1(M + γN)) = µh(µ−1Cr−1(M + γN))

= µh(µr−2µ−(r−1)Cr−1(M + γN))

= µh(µr−2Cr−1(µ
−1M + γµ−1N))

= µµs−2Cs−1(h(µ
−1M) + γh(µ−1N))

= µs−1Cs−1(h(µ
−1M) + γh(µ−1N))

= µs−1Cs−1(µ
−1ζ(M) + γµ−1ζ(N))

= µs−1µ−(s−1)Cs−1(ζ(M) + γζ(N))

= Cs−1(ζ(M) + γζ(N)).

(b)⇒ (a): For anyM,N ∈ Hr(F) and γ ∈ F−, we have,

h(µr−2Cr−1(M + γN)) = µ−1ζ(µr−1Cr−1(M + γN))

= µ−1ζ(Cr−1(µM + γµN))

= µ−1Cs−1(ζ(µM) + γζ(µN))

= µ−1Cs−1(µh(M) + γµh(N))

= µ−1µs−1Cs−1(h(M) + γh(N))

= µs−2Cs−1(h(M) + γh(N)).

Note that, if r is an even positive integer, thenµr−2 ∈ F− for anyµ ∈ F−∪SF−. In the following,
we investigate the properties of h : Hr(F) → Hs(F) that satisfies,

h(µr−2Cr−1(M + γN)) = µs−2Cs−1(h(M) + γh(N)), [C1]

for anyM,N ∈ Hr(F) and γ ∈ F−.

These properties are essential in proving the main results.

Lemma 2.3. Let F be a field with involution − and let r, s be even integers with r, s > 2. Let µ be a fixed
arbitrary non-zero element in F− ∪ SF− and let h : Hr(F) → Hs(F) be a mapping satisfying [C1]. For
M,N ∈ Hr(F) and γ ∈ F−, then the following assertions are valid.

(a) h(0r) = 0s.

(b) h(µr−2Cr−1(M)) = µs−2Cs−1(h(M)).

(c) Cs−1(h(M + γN)) = Cs−1(h(M) + γh(N)).

Proof.
(a) h(0r) = h(µr−20r) = h(µr−2Cr−1(0r)) = h(µr−2Cr−1(0r + (−1)0r))

= µs−2Cs−1(h(0r) + (−1)h(0r)) = µs−2Cs−1(h(0r)− h(0r))

= µs−2Cs−1(0s) = µs−20s

= 0s.
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(b) For anyM ∈ Hr(F), we have,

h(µr−2Cr−1(M)) = h(µr−2Cr−1(M + 0r)) = h(µr−2Cr−1(M + 0M))

= µs−2Cs−1(h(M) + 0h(M)) = µs−2Cs−1(h(M) + 0s)

= µs−2Cs−1(h(M)).

(c) By part (b), we obtain,

µs−2Cs−1(h(M + γN)) = h(µr−2Cr−1(M + γN)) = µs−2Cs−1(h(M) + γh(N)).

Consequently, we have,

Cs−1(h(M + γN)) = Cs−1(h(M) + γh(N)).

Next, we state some fascinating results regarding the rank of a Hermitian matrix.

Lemma 2.4. [6, Lemma 2.4] Let F be a field with involution − and let r ∈ N with r > 1. IfM ∈ Hr(F)
with R(M) = 1, thenM = Cr−1(W ) for someW ∈ Hr(F) with R(W ) = r − 1.

Lemma 2.5. [8, Lemma 2.4] Let F be a field with involution − and let r ∈ N with r > 2. Let
M,N ∈ Hr(F). Then, the following assertions are valid.

(a) If R(M) = t, then R(M +W ) = r for someW ∈ Hr(F) with R(W ) = r − t.

(b) R(M +W ) = R(N +W ) = r for someW ∈ Hr(F).

(c) R(M +W ) = r for some non-zero matrixW ∈ Hr(F) with either R(M) = r orR(W ) = r but not
both.

(d) IfM ̸= 0r, then R(M +W ) = r − 1 for someW ∈ Hr(F) with R(W ) ⩽ r − 2.

(e) If ||F−|| ⩾ r + 2 and R(M +N) = r, then R(M +N + µN) = r for some µ ∈ F− with µ ̸= 0.

Here, we determine some relations between R(M) and R(h(M)).

Lemma 2.6. Let F be a field with involution − and let r, s be even integers with r, s > 2. Let µ be a fixed
arbitrary non-zero element in F− ∪ SF− and let h : Hr(F) → Hs(F) be a mapping satisfying [C1]. Let
M ∈ Hr(F). Then, the following assertions are valid.

(a) R(h(M)) ⩽ 1 if R(M) = 1.

(b) R(h(M)) ⩽ s− 1 if R(M) = r − 1.

(c) R(h(M) ⩽ s− 2 if R(M) ⩽ r − 2.

(d) R(M) = r if R(h(M)) = s.

Proof.
(a) If R(M) = 1, then we obtain R(Cr−1(M)) = 0 by Lemma 1.1(m). Thus,

µs−2Cs−1(h(M)) = h(µr−2Cr−1(M)) = h(µr−20r) = h(0r) = 0s.
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This leads to,
Cs−1(h(M)) = 0s.

This shows that R(Cs−1(h(M))) = 0. Hence, by Lemma 1.1(m), R(h(M)) ⩽ s − 2. On the
other hand, since R(µ2−rM) = R(M) = 1, it follows from Lemma 2.4 that
µ2−rM = Cr−1(N) for some N ∈ Hr(F) with R(N) = r − 1. This implies that M =
µr−2Cr−1(N). So, we obtain,

h(M) = h(µr−2Cr−1(N)) = µs−2Cs−1(h(N)).

It follows that R(µs−2Cs−1(h(N))) ⩽ s− 2. Therefore, by Lemma 1.1(k)-(m), we obtain,

R(µs−2Cs−1(h(N))) = R(Cs−1(h(N))) ⩽ 1.

Consequently, we obtain R(h(M)) ⩽ 1.

(b) If R(M) = r − 1, then we obtain R(Cr−1(M)) = 1 by Lemma 1.1(l). Since,

R(µr−2Cr−1(M)) = R(Cr−1(M)) = 1,

we obtain R(h(µr−2Cr−1(M))) ⩽ 1 by part (a). By Lemma 1.1(m), it follows that,

R(Cs−1(h(µ
r−2Cr−1(M)))) = 0,

and so, Cs−1(h(µ
r−2Cr−1(M))) = 0s. On the other hand, we have,

Cs−1(h(µ
r−2Cr−1(M))) = Cs−1(µ

s−2Cs−1(h(M))) = (µs−2)s−1Cs−1(Cs−1(h(M))).

This implies that,
Cs−1(Cs−1(h(M))) = 0s.

This means that R(Cs−1(Cs−1(h(M))) = 0. So, by Lemma 1.1(k)-(m), we obtain,

R(Cs−1(h(M))) ⩽ s− 2,

and consequently, R(h(M)) ⩽ s− 1.

(c) If R(M) ⩽ r − 2, then we obtain R(Cr−1(M)) = 0 by Lemma 1.1(m). This implies that,

µs−2Cs−1(h(M)) = h(µr−2Cr−1(M)) = h(µr−20r) = h(0r) = 0s.

It follows that,
Cs−1(h(M)) = 0s.

Hence,R(Cs−1(h(M))) = 0 and consequently, we obtainR(h(M)) ⩽ s−2 by Lemma 1.1(m).

(d) Since R(h(M)) = s, it follows from part (b) that R(M) ̸= r − 1. If R(M) ⩽ r − 2, then by
part (c), we obtain R(h(M)) ⩽ s − 2, which is a contradiction. Consequently, we conclude
that R(M) = r.

Next, we are interested in the properties of hwhen it is injective.

Lemma 2.7. Let F be a field with involution − and let r, s be even integers with r, s > 2. Let µ be a fixed
arbitrary non-zero element in F− ∪ SF− and let h : Hr(F) → Hs(F) be a mapping satisfying [C1]. Let
M,N ∈ Hr(F) and γ ∈ F−. Then, the following assertions are equivalent.
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(a) h is injective.

(b) ker(h) = {0r}.

(c) R(M) = r if and only if R(h(M)) = s.

(d) R(M + γN) = r if and only if R(h(M) + γh(N)) = s.

Proof. (a) ⇒ (b): Let M ∈ ker(h). Hence, we have h(M) = 0s = h(0r). Since h is injective, we
haveM = 0r. Consequently, we obtain ker(h) = {0r}.

(b) ⇒ (c): The sufficiency part follows from Lemma 2.6(d) immediately. For necessity part,
we suppose to the contrary that R(h(M)) < s. Note that,

h(µr−2Cr−1(µ
r−2Cr−1(M))) = µs−2Cs−1(h(µ

r−2Cr−1(M)))

= µs−2Cs−1(µ
s−2Cs−1(h(M)))

= µs−2(µs−2)s−1Cs−1(Cs−1(h(M))).

Since R(h(M)) < s, by Lemma 1.1(l), (m), it follows that R(Cs−1(h(M)) ⩽ 1 and so,

R(Cs−1(Cs−1(h(M)))) = 0.

This yields that,

h(µr−2Cr−1(µ
r−2Cr−1(M))) = µs−2(µs−2)s−10s = 0s = h(0r).

Since ker(h) = {0r}, it follows that,

µr−2Cr−1(µ
r−2Cr−1(M)) = 0r

⇒ µr−2(µr−2)r−1Cr−1(Cr−1(M)) = 0r

⇒ Cr−1(Cr−1(M)) = 0r.

This shows that R(Cr−1(Cr−1(M))) = 0. Therefore, by Lemma 1.1(k)-(m), it follows that,

R(Cr−1(M)) ⩽ r − 2,

and hence, R(M) ⩽ r − 1. This contradicts with the fact that R(M) = r. So, we conclude that
R(h(M)) = s.

(c)⇒ (d): By Lemma 1.1(k) and Lemma 2.3(c), we obtain,

R(M + γN) = r ⇔ R(h(M + γN)) = s

⇔ R(Cs−1(h(M + γN)) = s

⇔ R(Cs−1(h(M) + γh(N)) = s

⇔ R(h(M) + γh(N)) = s.

(d)⇒ (a): LetX,Y ∈ Hr(F)with h(X) = h(Y ). Hence, by Lemma 2.5(a), R(X −Y +W ) = r
for someW ∈ Hr(F)with R(W ) = r −R(X − Y ). On the other hand, we have,

Cs−1(h(W )) = Cs−1(h(W − Y + Y )).
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By Lemma 2.3(c), it follows that,

Cs−1(h(W )) = Cs−1(h(W − Y ) + h(Y ))

= Cs−1(h(W − Y ) + h(X))

= Cs−1(h(W − Y +X))

= Cs−1(h(X − Y +W )).

Since R(X − Y + W ) = r, we have R(h(X − Y + W )) = s. So, by Lemma 1.1(k), we obtain
R(Cs−1(h(X − Y +W ))) = s, which gives that R(Cs−1(h(W )) = s and so, R(h(W )) = s. This
implies that R(W ) = r. Hence, R(X − Y ) = 0, which gives that X − Y = 0r. Consequently,
X = Y , which implies that h is injective.

In the following, we demonstrate that h possesses nicer properties when it is injective.

Lemma 2.8. Let F be a field with involution − and let r, s be even integers with r, s > 2. Let ||F−|| = 2
or ||F−|| ⩾ r+2. Let µ be a fixed arbitrary non-zero element in F− ∪ SF− and let h : Hr(F) → Hs(F) be
a mapping satisfying [C1]. If h is injective, then h(M + γN) = h(M) + γh(N) for anyM,N ∈ Hr(F)
and γ ∈ F−.

Proof. To prove this, we break our proof into the following seven claims.

Claim 2.1. IfM,N ∈ Hr(F) and γ ∈ F− with R(M + γN) = r, then,

h(M + γN)

|h(M + γN)|
=

h(M) + γh(N)

|h(M) + γh(N)|
, (1)

and

h(M + γN)

|h(M + γN)|
=

h(M) + h(γN)

|h(M) + h(γN)|
, (2)

where |h(M + γN)|, |h(M) + γh(N)| and |h(M) + h(γN)| are non-zero elements in F−.

In view of Lemma 2.3(c), we have,

Cs−1(h(M + γN)) = Cs−1(h(M) + γh(N)).

By Lemma 1.1(n), it gives that,

Zsadj(h(M + γN))∼Zs = Zsadj(h(M) + γh(N))∼Zs.

Since |Zs| ̸= 0, it follows that,

adj(h(M + γN))∼ = adj(h(M) + γh(N))∼,

and hence,

adj(h(M + γN)) = adj(h(M) + γh(N)).

From Lemma 2.7(d), R(h(M + γN)) = R(h(M) + γh(N)) = s. This shows that h(M + γN) and
h(M) + γh(N) are invertible. By the fact of adjoint matrix, we get,

|h(M + γN)|(h(M + γN))−1 = |h(M) + γh(N)|(h(M) + γh(N))−1,
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where |h(M + γN)| and |h(M) + γh(N)| are non-zero elements in F−. This yields that,

h(M + γN)

|h(M + γN)|
=

h(M) + γh(N)

|h(M) + γh(N)|
.

On the other hand, by Lemma 2.3(c), we have,

Cs−1(h(M + γN)) = Cs−1(h(M) + h(γN)).

Hence, by using similar arguments as in above, we will obtain,

h(M + γN)

|h(M + γN)|
=

h(M) + h(γN)

|h(M) + h(γN)|
,

where |h(M + γN)| and |h(M) + h(γN)| are non-zero elements in F−.

Claim 2.2. h(γM) = γh(M) for any γ ∈ F− andM ∈ Hr(F) with R(M) = r.

Clearly, the claim holds when γ = 0. Thus, we consider for γ ̸= 0. Since R(γM) = R(M) = r,
by Lemma 2.5(c), we have R(N + γM) = r for some N ∈ Hr(F) with 0 < R(N) < r. From (1)
and (2), we obtain,

h(N) + γh(M)

|h(N) + γh(M)|
=

h(N) + h(γM)

|h(N) + h(γM)|
.

For the purpose of convenience, we let τ1 = |h(N) + γh(M)| and τ2 = |h(N) + h(γM)|. It follows
that,

h(N) + γh(M)

τ1
=
h(N) + h(γM)

τ2
, (3)

which yields that,

(τ2 − τ1)h(N) = τ1h(γM)− τ2γh(M).

From (1), we have,

h(γM) = κh(M),

where κ =
γ|h(γM)|
|γh(M)|

̸= 0. This gives that,

(τ2 − τ1)h(N) = (τ1κ− τ2γ)h(M).

In view of Lemma 2.7(c), it follows that R(h(M)) = s and R(h(N)) ̸= s. This shows that h(M)
and h(N) are linearly independent. So, we are forced to conclude that τ2 − τ1 = 0, which implies
that τ1 = τ2. Consequently, from (3), we obtain,

h(γM) = γh(M).

Claim 2.3. For anyM,N ∈ Hr(F) with R(M +N) = r, if R(M) ̸= r and R(N) = r, then
h(M +N) = h(M) + h(N).

Obviously, the claim holds when M = 0r. Hence, we focus on the case where M ̸= 0r. We
consider the case where ||F−|| ⩾ r + 2. From Lemma 2.5(e), we have R(M + N + κN) = r for
some κ ∈ F− with κ ̸= 0. Therefore, by (1), we have,

h(M +N + κN)

|h(M +N + κN)|
=

h(M +N) + κh(N)

|h(M +N) + κh(N)|
.
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On the other hand, by (1), we have,

h(M +N + κN)

|h(M +N + κN)|
=

h(M + (κ+ 1)N)

|h(M + (κ+ 1)N)|

=
h(M) + (κ+ 1)h(N)

|h(M) + (κ+ 1)h(N)|

=
h(M) + h(N) + κh(N)

|h(M) + h(N) + κh(N)|
.

This yields that,

h(M +N) + κh(N)

|h(M +N) + κh(N)|
=

h(M) + h(N) + κh(N)

|h(M) + h(N) + κh(N)|
.

Let τ1 =
|h(M +N) + κh(N)|

|h(M) + h(N) + κh(N)|
. Hence,

h(M +N) + κh(N) = τ1(h(M) + h(N) + κh(N)). (4)

From (1), we see that,

h(M +N) = τ2(h(M) + h(N)),

where τ2 =
|h(M +N)|

|h(M) + h(N)|
. So, we have,

τ2(h(M) + h(N)) + κh(N) = τ1(h(M) + h(N) + κh(N))

⇒ (τ2 − τ1)h(M) + (τ2 − τ1 + κ− τ1κ)h(N) = 0.

By Lemma 2.7(c), we see that R(h(M)) ̸= s and R(h(N)) = s. This means that h(M) and h(N)
are linearly independent. So, we are forced to conclude that τ2 − τ1 = 0 and τ2 − τ1 + κ− τ1κ = 0.
This leads to κ(1 − τ1) = 0. Since κ ̸= 0, it follows that 1 − τ1 = 0, which gives that τ1 = 1.
Consequently, we obtain,

h(M +N) = h(M) + h(N),

by (4). Next, we consider the case where ||F−|| = 2. Since R(M +N) = r, from (1), we have,

h(M +N)

|h(M +N)|
=

h(M) + h(N)

|h(M) + h(N)|
.

Since ||F−|| = 2, it follows that F− = {0, 1}. So, we conclude that |h(M+N)| = |h(M)+h(N)| = 1.
Consequently, we obtain h(M +N) = h(M) + h(N).

Claim 2.4. h(γM) = γh(M) for any γ ∈ F− andM ∈ Hr(F) with R(M) ̸= r.

The result clearly true for γ = 0 or M = 0r. Hence, we consider the case where γ ̸= 0 and
M ̸= 0r. Since R(γM) = R(M) ̸= r, we have R(γM +N) = r for someN ∈ Hr(F)with R(N) = r
by Lemma 2.5(c). It follows that R(M + γ−1N) = R(γM + N) = r. By Claim 2.3, we have
h(γM +N) = h(γM) + h(N). On the other hand, in view of Claims 2.2 and 2.3, we have,

h(γM +N) = h(γ(M + γ−1N)) = γh(M + γ−1N) = γ(h(M) + h(γ−1N))

= γh(M) + γh(γ−1N) = γh(M) + h(N).

Consequently, we obtain h(γM) = γh(M).
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Claim 2.5. For any M,N ∈ Hr(F) with R(M + N) = r, if M and N are linearly independent, then
h(M) and h(N) are linearly independent.

Assume that h(M) and h(N) are linearly dependent for some M,N ∈ Hr(F) with M,N are
linearly independent. Thus, h(M) = ch(N) for some c ∈ F−. By Lemma 2.7(d), we obtain
R(h(M) + h(N)) = s. This leads to R((1 + c)h(N)) = s and so, R(h(N)) = R((1 + c)h(N)) = s.
Hence, from Lemma 2.7(c), we have R(N) = s. Therefore, we have h(M) = ch(N) = h(cN) by
Claim 2.2. Since h is injective, it follows that M = cN . This shows that M and N are linearly
dependent, which is a contradiction.

Claim 2.6. h(M +N) = h(M) + h(N) for anyM,N ∈ Hr(F) with R(M +N) = r.

Suppose that ||F−|| = 2. By (1), we obtain,

h(M +N)

|h(M +N)|
=

h(M) + h(N)

|h(M) + h(N)|
.

Since ||F−|| = 2, it follows that F− = {0, 1}. So, we conclude that |h(M+N)| = |h(M)+h(N)| = 1.
Consequently, we obtain h(M +N) = h(M)+h(N). Here, we consider for ||F−|| ⩾ r+2. Assume
thatM and N are linearly independent. From Lemma 2.5(e), we have R(M + N + κN) = r for
some κ ∈ F− with κ ̸= 0. Therefore, by using similar arguments as in the proof of Claim 2.3, we
get,

h(M +N) + κh(N) = τ1(h(M) + h(N) + κh(N)), (5)

and

(τ2 − τ1)h(M) + (τ2 − τ1 + κ− τ1κ)h(N) = 0,

where τ1 =
|h(M +N) + κh(N)|

|h(M) + h(N) + κh(N)|
and τ2 =

|h(M +N)|
|h(M) + h(N)|

. SinceM and N are linearly inde-

pendent, by Claim 2.5, h(M) and h(N) are also independent. So, we are forced to conclude that
τ2 − τ1 = 0 and τ2 − τ1 + κ − τ1κ = 0. This leads to κ(1 − τ1) = 0. Since κ ̸= 0, it follows that
1− τ1 = 0, which gives that τ1 = 1. Consequently, we obtain,

h(M +N) = h(M) + h(N),

by (5). We next suppose thatM andN are linearly dependent, thenN = cM for some c ∈ F−. By
Claim 2.2, we get,

h(M +N) = h(M + cM) = h((1 + c)M) = (1 + c)h(M) = h(M) + ch(M)

= h(M) + h(cM) = h(M) + h(N).

Claim 2.7. h(M +N) = h(M) + h(N) for anyM,N ∈ Hr(F).

In view of Lemma 2.5(b),R(M+W ) = R(M+N+W ) = r for someW ∈ Hr(F). So, by Claim
2.6, we obtain,

h(M +N +W ) = h(M +W +N)

⇒ h(M +N) + h(W ) = h(M +W ) + h(N)

⇒ h(M +N) + h(W ) = h(M) + h(W ) + h(N)

⇒ h(M +N) = h(M) + h(N).

Consequently, by combining all the cases above, we complete the proof.
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3 Characterization of Compound-Commuting Mappings on
Skew-Hermitian Matrices

In the section, we determine the structures of h : Hr(F) → Hs(F) that satisfies [C1]. We start
by proving r = s.

Lemma 3.1. Let F be a field with involution − and let r, s be even integers with r, s > 2. Let ||F−|| = 2
or ||F−|| ⩾ r+2. Let µ be a fixed arbitrary non-zero element in F− ∪ SF− and let h : Hr(F) → Hs(F) be
a mapping satisfying [C1]. If h is injective, then r = s.

Proof. By Lemma 2.8, we have h is additive. SinceR(Ir) = r, by Lemma 2.7(c), R(h(Ir)) = s. This
gives that,

s = R(h(Ir)) = R(h(E11 + E22 + . . .+ Err)).

Hence,

s = R(h(E11) + h(E22) + . . .+ h(Err))

⩽ R(h(E11)) +R(h(E22)) + . . .+R(h(Err)).

For any i ∈ {1, 2, . . . , r}, since R(Eii) = 1, hence we obtain R(h(Eii)) ⩽ 1 by Lemma 2.6(a).
This gives that s ⩽ r. We assume that s < r. Therefore, in view of [10, Lemma 2.1], we have

R

∑
j∈J

h(Ejj)

 = s for some J ⊂ {1, 2, . . . , r}. From Lemma 1.1(k), it follows that,

R

µs−2Cs−1

∑
j∈J

h(Ejj)

 = R

Cs−1

∑
j∈J

h(Ejj)

 = s.

This leads to,

s = R

µs−2Cs−1

∑
j∈J

h(Ejj)


= R

µs−2Cs−1

h
∑

j∈J

Ejj


= R

h
µr−2Cr−1

∑
j∈J

Ejj

 .

Since ||J || < r, we have R

∑
j∈J

Ejj

 = ||J || < r. Therefore, by Lemma 1.1(l), (m), it follows

that R

µr−2Cr−1

∑
j∈J

Ejj

 = R

Cr−1

∑
j∈J

Ejj

 ⩽ 1. So, by Lemma 2.6(a), we obtain

s = R

h
µr−2Cr−1

∑
j∈J

Ejj

 ⩽ 1, which is a contradiction. Consequently, we obtain

r = s.
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Next, we determine the form of h.

Lemma 3.2. Let F be a field with involution − and let r, s be even integers with r, s > 2. Let ||F−|| = 2
or ||F−|| ⩾ r + 2. Let µ be a fixed arbitrary non-zero element in F− ∪ SF− and let h : Hr(F) → Hs(F)
be a mapping satisfying [C1]. If h is injective, then there exist some η ∈ F− with η ̸= 0, G ∈ Mr(F) with
R(G) = r, and ρ : F → F with ρ is a non-zero field homomorphism of F satisfying ρ(x) = ρ(x) for any
x ∈ F such that,

h(M) = ηGMρG
T for anyM ∈ Hr(F).

Proof. By Lemma 2.6(a), we have R(h(M)) ⩽ 1 for anyM ∈ Hr(F) with R(M) = 1. By Lemma
2.8, we have h is additive. Hence, h is a rank-one non-increasing additive mapping. On the other
hand, since R(Ir) = r, by Lemma 2.7(c), we obtain R(h(Ir)) = s. It follows that h has an image
with rank s. Therefore, in view of [17, Main Theorem, p. 603] and [18, Theorem 2.1 and Remark
2.4], we obtain,

h(M) = ηGMρG
T for anyM ∈ Hr(F),

where η ∈ F−,G ∈ Mr(F), and ρ : F→ Fwith ρ is a field homomorphismofF satisfying ρ(x)= ρ(x)

for any x ∈ F. If η = 0 or ρ is a zero field homomorphism of F, then h(M) = ηGMρG
T
= 0s for

anyM ∈ Hr(F), which implies that R(h(M)) = 0 for anyM ∈ Hr(F). Besides that, if R(G) ̸= r,
then ||h(M)|| =

∣∣∣∣∣∣ηGMρG
T
∣∣∣∣∣∣ = 0 for any M ∈ Hr(F), which implies that R(h(M)) ̸= s. These

three cases show that there does not exist any image of h with rank s, which is a contradiction.
Consequently, η ̸= 0, R(G) = r, and ρ is a non-zero field homomorphism of F.

Subsequently, we investigate the structures of h.

Lemma 3.3. Let F be a field with involution − and let r, s be even integers with r, s > 2. Let ||F−|| = 2
or ||F−|| ⩾ r+2. Let µ be a fixed arbitrary non-zero element in F− ∪ SF− and let h : Hr(F) → Hs(F) be
a mapping satisfying [C1]. If h is injective, and,

h(M) = ηGMρG
T for anyM ∈ Hr(F),

where η ∈ F− with η ̸= 0, G ∈ Mr(F) with R(G) = r, and ρ : F → F with ρ is a non-zero field
homomorphism of F satisfying ρ(x) = ρ(x) for any x ∈ F, then ρ is the identity mapping or ρ = −.

Proof. In view of Lemma 2.8, we have h(yIr) = yh(Ir) for any y ∈ F−. It follows that for any
y ∈ F−,

h(yIr) = yh(Ir)

⇒ ηG(yIr)
ρG

T
= yηGIρrG

T

⇒ (yIr)
ρ = yIρr

⇒ ρ(y)Ir = yIr

⇒ ρ(y) = y.
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Let y ∈ Fwith y ̸= 0. Note that, y + y, yy ∈ F−. It follows that,

ρ(y + y) = y + y and ρ(yy) = yy

⇒ ρ(y) + ρ(y) = y + y and ρ(y)ρ(y) = yy

⇒ ρ(y)(y + y − ρ(y)) = yy

⇒ ρ(y)2 − (y + y)ρ(y) + yy = 0

⇒ (ρ(y)− y)(ρ(y)− y) = 0

⇒ ρ(y) = y or ρ(y) = y.

This shows that ρ is the identity mapping or ρ = −.

Lemma 3.4. Let F be a field with involution − and let r, s be even integers with r, s > 2. Let ||F−|| = 2
or ||F−|| ⩾ r+2. Let µ be a fixed arbitrary non-zero element in F− ∪ SF− and let h : Hr(F) → Hs(F) be
a mapping satisfying [C1]. If h is injective, and,

h(M) = ηGMρG
T for anyM ∈ Hr(F),

where η ∈ F− with η ̸= 0, G ∈ Mr(F) with R(G) = r, and ρ : F → F with ρ is ρ is the identity mapping
or ρ = −, then Cr−1(G) = gG for some non-zero element g ∈ F with ηr−2gg = 1.

Proof. In view of Lemma 3.1, we obtain r = s. LetM ∈ Mr(F). Hence, we have,

h(µr−2Cr−1(M)) = µr−2Cr−1(h(M))

⇒ ηG(µr−2Cr−1(M))ρG
T
= µr−2Cr−1(ηGM

ρG
T
)

⇒ ηρ(µr−2)GCr−1(M)ρG
T
= µr−2ηr−1Cr−1(G)Cr−1(M)ρCr−1(G)

T

⇒ ηµr−2GCr−1(M)ρG
T
= µr−2ηr−1Cr−1(G)Cr−1(M)ρCr−1(G)

T
.

It follows that,

GCr−1(M)ρG
T
= ηr−2Cr−1(G)Cr−1(M)ρCr−1(G)

T

⇒ Cr−1(G)
−1GCr−1(M)ρ = ηr−2Cr−1(M)ρCr−1(G)

T
(G

T
)−1

⇒ Cr−1(G)
−1GCr−1(M)ρ = ηr−2Cr−1(M)ρ((Cr−1(G)−1G)T )−1.

Let U = Cr−1(G)
−1G and V = ηr−2((Cr−1(G)−1G)T )−1. We set M = Ir. Since Cr−1(Ir)

ρ = Iρr
and Iρr = Ir, we obtain,

UIr = IrV ⇒ U = V.

Next, we setM = Ir −Er+1−i,r+1−i, where i ∈ Nwith 1 ⩽ i ⩽ r. By Lemma 1.1(o), we know that
Cr−1(M)ρ = Eρ

ii = Eii. It follows that UEii = EiiU. For any j ∈ Nwith 1 ⩽ j ̸= i ⩽ r, we have,

(UEii)ij = (EiiU)ij

⇒
r∑

k=1

Uik(Eii)kj =

r∑
k=1

(Eii)ikUkj

⇒
r∑

k=1

Uik(0) = (Eii)iiUij

⇒ 0 = (1)Uij

⇒ Uij = 0.
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This shows that U is a diagonal matrix. Subsequently, we set,

M = Ir − Er+1−i,r+1−i − Er+1−j,r+1−j + (−1)i+j+1Er+1−j,r+1−i,

where i, j ∈ N with 1 ⩽ i ̸= j ⩽ r. By Lemma 1.1(p), we know that Cr−1(M)ρ = Eρ
ij = Eij . This

implies that,

UEij = EijU

⇒ (UEij)ij = (EijU)ij

⇒
n∑

k=1

Uik(Eij)kj =

n∑
k=1

(Eij)ikUkj

⇒ Uii(Eij)ij = (Eij)ijUjj

⇒ Uii(1) = (1)Ujj

⇒ Uii = Ujj .

This shows that U is a diagonal matrix, where each diagonal entry is equal. Hence, U = uIr for
some u ∈ F and so, U = g−1Ir for some g ∈ F. This gives that,

Cr−1(G)
−1G = g−1Ir and ηr−2((Cr−1(G)−1G)T )−1 = g−1Ir

⇒ Cr−1(G) = gG and Cr−1(G) = g−1η2−rG

⇒ g = g−1η2−r

⇒ ηr−2gg = 1.

Consequently, we obtain Cr−1(G) = gG and ηr−2gg = 1, as desired.

We characterize h in the next proposition.

Proposition 3.1. LetF be a field with involution− and let r, s be even integers with r, s > 2. Let ||F−|| = 2
or ||F−|| ⩾ r+2. Let µ be a fixed arbitrary non-zero element in F− ∪ SF− and let h : Hr(F) → Hs(F) be
an injective mapping. Then,

h(µr−2Cr−1(M + γN)) = µs−2Cs−1(h(M) + γh(N)),

for anyM,N ∈ Hr(F) and γ ∈ F− if and only if r = s, and there exist some non-zero elements η ∈ F−,

g ∈ F and invertible matrixG ∈ Mr(F)with ηr−2gg = 1 andCr−1(G) = gG such that h(M) = ηGMG
T

for anyM ∈ Hr(F) or h(M) = ηGM̄G
T for anyM ∈ Hr(F).

Proof. In view of Lemmas 3.1–3.4, the necessity part is obtained immediately. Conversely, we let
ρ : F→ F be amappingwith ρ is the identitymapping or ρ = −. Hence, wehaveh(M) = ηGMρG

T
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for anyM ∈ Hr(F). Therefore, for anyM,N ∈ F and γ ∈ F−, we obtain,

h(µr−2Cr−1(M + γN)) = ηG(µr−2Cr−1(M + γN))ρG
T

= ρ(µr−2)ηGCr−1(M + γN)ρG
T

= µr−2ηGCr−1(M + γN)ρG
T

= µr−2η(g−1Cr−1(G))Cr−1(M + γN)ρ(g−1Cr−1(G
T
))

= µr−2ηg−1g−1Cr−1(G(M + γN)ρG
T
)

= µr−2ηηr−2Cr−1(G(M
ρ + ρ(γ)Nρ)G

T
)

= µr−2ηr−1Cr−1(GM
ρG

T
+ γGNρG

T
)

= µr−2Cr−1(ηGM
ρG

T
+ γηGNρG

T
)

= µr−2Cr−1(h(M) + γh(N))

= µs−2Cs−1(h(M) + γh(N)).

Finally, by applying Proposition 3.1 andLemma2.2, we obtain a general formof the compound-
commuting mapping on skew-Hermitian matrices that satisfies [S1], as follows:

Theorem 3.1. Let F be a field with involution − and let r, s be even integers with r, s > 2. Let ||F−|| = 2
or ||F−|| ⩾ r + 2. Let ζ : SHr(F) → SHs(F) be an injective mapping. Then,

ζ(Cr−1(M + γN)) = Cs−1(ζ(M) + γζ(N)),

for any M,N ∈ SHr(F) and γ ∈ F− if and only if r = s, and there exist some non-zero elements
η ∈ F−, g ∈ F and invertible matrix G ∈ Mr(F) with ηr−2gg = 1 and Cr−1(G) = gG such that
ζ(M) = ηGMG

T for anyM ∈ Hr(F) or ζ(M) = ηGM̄G
T for anyM ∈ Hr(F).

Proof. The sufficiency part can be proved by using similar arguments as in the proof of Proposition
3.1. Now, we consider the necessity part. Let µ be a fixed arbitrary non-zero element in SF− and
let h : Hr(F) → Hs(F) be a mapping satisfies h(W ) = µ−1ζ(µW ) for anyW ∈ Hr(F). By Lemma
2.2, h satisfies,

h(µr−2Cr−1(M + γN)) = µs−2Cs−1(h(M) + γh(N)),

for anyM,N ∈ Hr(F) and γ ∈ F−. Therefore, in view of Proposition 3.1, it follows that r = s, and
there exist some non-zero elements c ∈ F−, g ∈ F and invertible matrixG ∈ Mr(F)with cr−2gg = 1

and Cr−1(G) = gG such that h(M) = cGMG
T for any M ∈ Hr(F) or h(M) = cGM̄G

T for any
M ∈ Hr(F). Let ρ : F → F be a mapping with ρ is the identity mapping or ρ = −. Thus, we have
h(M) = cGMρG

T for anyM ∈ Hr(F). For anyM ∈ SHr(F), we have,

ζ(M) = ζ(µ(µ−1M))

= µh(µ−1M)

= µcG(µ−1M)ρG
T

= µρ(µ−1)cGMρG
T

= µ(±µ−1)cGMρG
T

= ±cGMρG
T
.
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Let η = ±c. Hence, we have η ∈ F− and ηr−2gg = 1. Consequently, we obtain ζ(M) = ηGMG
T

for anyM ∈ SHr(F) or ζ(M) = ηGM̄G
T for anyM ∈ SHr(F). We are done.
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